Compound Wiretap Channels

نویسندگان

  • Yingbin Liang
  • Gerhard Kramer
  • H. Vincent Poor
  • Shlomo Shamai
چکیده

This paper considers the compound wiretap channel, which generalizes Wyner’s wiretap model to allow the channels to the (legitimate) receiver and to the eavesdropper to take a number of possible states. No matter which states occur, the transmitter guarantees that the receiver decodes its message and that the eavesdropper is kept in full ignorance about the message. The compound wiretap channel can also be viewed as a multicast channel with multiple eavesdroppers, in which the transmitter sends information to all receivers and keeps the information secret from all eavesdroppers. For the discrete memoryless channel, lower and upper bounds on the secrecy capacity are derived. The secrecy capacity is established for the degraded channel and the semideterministic channel with one receiver. The parallel Gaussian channel is further studied. The secrecy capacity and the secrecy degree of freedom (s.d.o. f .) are derived for the degraded case with one receiver. Schemes to achieve the s.d.o. f . for the case with two receivers and two eavesdroppers are constructed to demonstrate the necessity of a prefix channel in encoder design. Finally, the multi-antenna (i.e., MIMO) compound wiretap channel is studied. The secrecy capacity is established for the degraded case and an achievable s.d.o. f . is given for the general case.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Capacity results for classes of wiretap channels

We consider two communication systems which are time-discrete and memoryless, both depend on a state, in terms of information-theoretic secure data transmission. The compound channel consists of a finite or infinite set of channels which is known to both the sender and the receiver, but unfortunately it is not known which channel is in use for any codeword transmission. In contrast the state of...

متن کامل

Secrecy results for compound wiretap channels

We derive a lower bound on the secrecy capacity of the compound wiretap channel with channel state information at the transmitter which matches the general upper bound on the secrecy capacity of general compound wiretap channels given by Liang et al. and thus establishing a full coding theorem in this case. We achieve this with a stronger secrecy criterion and the maximum error probability crit...

متن کامل

Secure and Robust Identification via Classical-Quantum Channels

We study the identification capacity of classical-quantum channels (“cq-channels”), under channel uncertainty and privacy constraints. To be precise, we consider first compound memoryless cq-channels and determine their identification capacity; then we add an eavesdropper, considering compound memoryless wiretap cqq-channels, and determine their secret identification capacity. In the first case...

متن کامل

Almost universal codes for MIMO wiretap channels

Despite several works on secrecy coding for fading and MIMO wiretap channels from an error probability perspective, the construction of information theoretically secure codes over such channels remains as an open problem. In this paper, we consider a fading wiretap channel model where the transmitter has only partial statistical channel state information. We extend the flatness factor criterion...

متن کامل

"Pretty strong" converse for the private capacity of degraded quantum wiretap channels

In the vein of the recent “pretty strong” converse for the quantum and private capacity of degradable quantum channels [Morgan/Winter, IEEE Trans. Inf. Theory 60(1):317333, 2014], we use the same techniques, in particular the calculus of min-entropies, to show a pretty strong converse for the private capacity of degraded classical-quantum-quantum (cqq-)wiretap channels, which generalize Wyner’s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • EURASIP J. Wireless Comm. and Networking

دوره 2009  شماره 

صفحات  -

تاریخ انتشار 2009